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Abstract

This model couples a stochastic soil moisture model to the soil carbon cycle, rep-
resented by three differential equations based on a previous model. Soil moisture and
carbon are linked to one another in this model through hydrological controls on the
rate of microbial decomposition. We then applied the model to a precipitation gradi-
ent on a volcano on the island of Hawai’i, Mauna Kea, in order to show alterations in
carbon cycle as a result of moisture changes on short- and long-term bases.

1 Introduction

In this model, we linked a soil moisture model based on stochastic rainfall to the soil
carbon cycle, represented by three differential equations for each pool of carbon. The goal
of this model is to explore and work to predict the relationship between water and nutrient
cycling in soil systems. Empirically, alterations in soil moisture have been shown to cause
changes in soil nutrient availability and cycling. [8, 11] This is important to understand in
order to predict how ecosystems may respond to the increasing frequency of water-related
climate crises. [9]

We drew heavily on an existing model by Porporato et. al, which depicted the hydro-
logical controls on both the carbon and nitrogen cycles. [10] After building the model, we
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applied it to Mauna Kea, a volcano in Hawai’i that has pronounced changes in rainfall with
elevation. [2] Hawaii has many ecological gradients that have been used to ask questions
about ecosystem responses to changing resources. In our application, we used parameters
based on three areas along the gradient with differing rainfall levels to show how carbon
availability is altered both on a short-term basis with individual rainfall events and with
long-term differences in precipitation patterns.

2 Methodology

2.1 Rainfall

Rainfall is simulated via a stochastic process drawn from two distributions. First, rainfall
events are modelled as a Poisson process with rate λ = RainyDays

365
- intuitively, the proba-

bility of any day being “rainy.” In our discrete-time model, this is generated via a binomial
approximation with probability of any time-step being rainy being:

P (Rainy) = P (U < ∆tλ)

Here, U is a uniformly drawn random variable on [0, 1) and ∆t is in units days−1. Next,
rainfall amounts are drawn for each event from an exponential distribution with mean µ =
Y earlyRainfall

RainyDays
. These are generated via the inverse CDF:

h = −µ lnU

Thus, a time-series ĥ is generated with each time step having value 0 or a rainfall amount
h.

2.2 Soil Moisture

Using the time-series of rainfall as input, changes in soil moisture are calculated via
forward-Euler as the sum of gains from Infiltration and losses from Evaporation, Transpira-
tion, and Leakage:

nZ∆s = I(s, h) − ∆t [E(s) + T (s) + L(s)]

Above, n is the soil porosity and Z is the soil depth.
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Infiltration is, in most cases, simply the magnitude of rainfall per area, as simulated in
the previous step. However, because total soil moisture cannot exceed 1, it is limited by the
remaining capacity of the soil:

I(s, h) = min [h, nZ(1 − s)]

Evaporation is a non-linear function of soil moisture: below the hygroscopic point sh, wa-
ter does not evaporate; between this and the wilting point sw, evaporation linearly increases
to a maximum value Emax; and, above the wilting point, evaporation is constant.

E(s) =


0 if s < sh
s−sh
sw−sh

Emax if sh < s < sw

Emax if s > sw

Transpiration is a similar non-linear function of soil moisture: below the wilting point,
there is no transpiration; above the wilting point but below the water stress point s∗, tran-
spiration increases linearly to a maximum value Tmax; and, above the wilting point, transpi-
ration is constant.

T (s) =


0 if s < sw
s−sw
sw−s∗

Tmax if sw < s < s∗

Tmax if s > s∗

Finally, leakage is a nonlinear function of soil moisture dependent on the saturated hy-
draulic conductivity of the soil Ks, a constant β = 2b + 4 dependent on the soil porosity
index b, and the soil field capacity sfc.

L(s) =

{
0 if s < sfc

Ks
e
beta(s−sfc)−1

e
beta(1−sfc)−1

if s > sfc

With these equations and the forward-Euler method, given an initial value s0, a time-
series can be iteratively produced for soil moisture using the simulated rainfall data.

2.3 Carbon Cycle

Finally, given a time-series of soil moisture data, a box model can be used to approximate
the carbon cycle in the three pools: litter, humus, and biomass. The carbon cycle is linked
to soil moisture via a decomposition function:
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fd(s) =

{
s

sfc
if s < sfc

sfc
s

if s > sfc

Decomposition in the litter pool is a function of this value, biomass carbon Cb, litter
carbon Cl, and a rate parameter kl:

DECl = fd(s)klCbCl

Similarly, decomposition in the humus pool is a function of the soil moisture, biomass
carbon, humus carbon Ch, and a rate parameter kh:

DECh = fd(s)khCbCh

Biomass death also contributes to the rate of carbon return to the litter pool, and is a
linear function of biomass carbon proportional to a rate parameter kd:

BD = kdCb

Given these decomposition functions, the change in carbon content in each box is again
calculated using forward-Euler. In the litter pool, carbon enters through litterfall ADD and
biomass microbial death, and leaves via decomposition:

∆Cl

∆t
= ADD +BD −DECl

In the humus pool, carbon enters as a fraction of the litter decomposition (proportional
to the ”isohumic coefficient” rh and leaves through humus decomposition:

∆Ch

∆t
= rhDECl −DECh

Finally, carbon enters the biomass pool via litter decomposition (less the fraction that
enters the humus and a fraction rr which goes to respiration) and humic decomposition
(again less respiration), and leaves via microbial death BD:

∆Cb

∆t
= (1 − rh − rr)DECl + (1 − rr)DECh −BD
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With these equations, a time-series of soil moisture values, and a set of initial values
(Cl0, Ch0, Cb0), the forward-Euler method can be used to calculate incremental changes and
thus a time-series of carbon contents in each pool.

3 Parameters

To run the model, we constructed three sets of parameters for each rainfall level on
Mauna Kea. On this volcano, rainfall levels relate inversely to elevation, meaning that
lower elevations experience around 3500mm/year of rainfall while the highest elevations have
extremely low levels of rainfall, around 500mm/year. At this high elevation level, vascular
plants are not able to grow. Before that threshold, however, there are different ecosystems
corresponding to moisture levels along the gradient. The wettest area is dominated by bogs
and forest, followed by scrub forest dominated by M. polymorpha, a shrub endemic to Hawaii,
ultimately ending with savannah. In a study that measured environmental thresholds of soil
fertility using the Mauna Kea gradient, soil nutrient content was measured at various points
on the volcano. Using their measurements in combination with a study of how M. polymorpha
litterfall changes with rainfall, we were able to estimate different parameters to reflect these
three areas as accurately as possible without collecting our own field data. [2]

Apart from carbon content, litterfall, and rainfall changes, specific soil and vegetation
parameters were difficult to find. For any remaining parameters, we used similar values to
the companion paper to Porporato et. al, which applied that model to an African savanna
ecosystem. [5]

Rainfall Parameters

We created a stochastic rainfall pattern based on how much rainfall there is on average
in each of three areas per year and how many rainy days Mauna Kea experiences per year
on average, which is 72. [2, 6]

Soil Parameters

These values usually need to be measured by taking soil samples and measuring weight,
bulk density, saturation point, and other traits. However, these values tend to be linked
to soil type and can therefore be estimated in that manner. Given that we are not able to
take field measurements, we used a porosity value that reflects the average porosity of silty
clay loam, which is the soil type most common in the Mauna Kea area. [7] In the study
of soil thresholds on the volcano, the soil in each area of the gradient is categorized more
specifically. [2] However, any porosity values we chose would merely be estimated, so we used
the same value for all three runs to reduce the chances of influencing our results incorrectly.

Soil depth refers to the area of soil in which roots are able to extend. This model is
only focused on how soil moisture and carbon change and are influenced by one another
in relation to vegetation responses, meaning that including any dynamics below the root
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Parameter Value Units Description
Days 7300 days Number of days to run the model

Steps per day 24 - Number of iterations per day
Rainy days 73 days Average number of rainy days per year

Yearly rainfall See below mm/year Average yearly rainfall
Z 300 mm Depth of soil layer
n 0.5 - Soil porosity
sh 0.02 - Hygroscopic point
sw 0.065 - Wilting point
s∗ 0.17 - Water stress point
sfc 0.3 - Field capacity
Emax See below mm/day Max evaporation
Tmax See below mm/day Max transpiration
b 0.2 - Soil porosity index
Ks 1.1 mm/day Saturated hydraulic conductivity
sinit 0.11 - Initial soil moisture
ADD See below gC/(day*m2) Litterfall
kd 8.5e-3 1/day Biomass death rate parameter
kl 6.5e-5 m2/(gC*day) Litter decomposition rate parameter
kh 2.5e-6 m2/(gC*day) Humus decomposition rate parameter
rh 0.25 - Isohumic coefficient
rr 0.6 - Respiration coefficient

Ch,init See below gC/m2 Initial humus carbon
Cb,init See below gC/m2 Initial biomass carbon
Cl,init See below gC/m2 Initial litter carbon

Table 1: Model Parameters and Descriptions

Parameter 1500m 2500m 3500m Unit
Yearly rainfall 3500 1200 500 mm/year

Emax 0.8 0.9 1.0 mm/day
Tmax 3.3 3.7 4.0 mm/day
ADD 0.5 0.6 0.7 gC/(day*m2)
Ch,init 7975 7000 13700 gC/m2

Cb,init 19 24 27 gC/m2

Cl,init 1240 1100 2160 gC/m2

Table 2: Altitude-dependent Parameter Values
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systems would unnecessarily complicate this model. We chose the value for this parameter
based on the depth of soil measurements taken in the Mauna Kea soil study. [2]

For the other soil parameters (field capacity and hygroscopic point), we used the values
from the companion paper to Porporato et. al. [5] These values would have to be measured
through field tests and are difficult to approximate from other soil information.

Vegetation Parameters

We scaled maximum evapotranspiration based on the aforementioned study of soil thresh-
olds on Mauna Kea. [2] This parameter changes due to alterations in vegetation patterns
and moisture levels.

Added litter is part of the input to the carbon litter pool, which is one of two organic
carbon pools in the soil. This value is based on how much litter is shed from plants, which
tends to change depending on rainfall, season, and temperature. It is also impacted by
ecosystem type, as different species types will shed litter more or less frequently than others.
To account for these changes as much as possible, we incorporated values for M. polymorpha
litterfall levels along a precipitation gradient in Hawaii Volcanoes National Park. [1] This is
a reasonable approximation for Mauna Kea values, as M. polymorpha does dominate many
of the volcano’s vegetation. [2]

Soil-Vegetation Parameters

The point of incipient stress for a plant is the threshold of soil moisture that will cause
stomatal closure, effectively decreasing transpiration and therefore impacting the cycling of
carbon. The permanent wilting point is the threshold at which the moisture available in
soil is so low that plants wilt and ultimately die. The values used for these parameters
were taken from Porporato et. al’s companion paper. [5] They found their values from
studies of Burkea africana, the dominant plant in the savanna ecosystem that they were
investigating. [5] These values will change for different plants, so it would be pertinent to
find good estimates for M. polymorpha for our system. To do this, it would be necessary to
carry out a greenhouse study of M. polymorpha responses to different soil moisture levels.

4 Results

This model was run for 1-, 20-, and 500-year durations at each altitude level, using a
set seed value to ensure consistency in rainfall generated between model runs. Full code is
posted on GitHub and is available upon request.

Generated rainfall data, displayed in Figure 1, exhibits the expected Poisson- and exponentially-
distributed properties. When compared to the soil moisture results in Figure 2, a clear
correlation can be seen: soil moisture rises following significant rainfall events, and exhibits
exponential decay in periods of low rainfall.
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Figure 1: One Year of Simulated Rainfall Events

Figure 2: One Year of Simulated Soil Moisture by Elevation
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As expected, soil moisture values are the highest at low elevations, which receive signifi-
cantly more rainfall. Following periods of very high rainfall, the capacity constraint is also
exhibited: soil moisture never exceeds 1, the maximum proportion able to be held of soil
with a given porosity.

Trends in carbon content vary significantly by pool. The humus pool is relatively stable;
changes are nearly imperceptible when viewed on a 20-year scale, and again very slight when
observed over 500 years as shown in Figure 3. By elevation, carbon accumulation in the
humus is the highest of the simulations, due to decreased decomposition as a result of lower
average soil moisture.

Figure 3: Humus Carbon Content over 500 Years

The biomass pool, on the other hand, exhibits the largest magnitude of swings in carbon
content. As shown in Figure 4, biomass carbon appears to follow a cyclical trend; the values
at higher elevations tend to spike together, while the value at the lowest elevation has the
opposite pattern. The period for this cycle appears to be about 10 years.

Finally, the litter pool exhibits a similar cyclical pattern to the humus pool, albeit on
a scale which is smoother and smaller in magnitude. This is shown on a 20-year scale in
Figure 5, and a 500-year scale in Figure 6. One significant pattern to note is that the carbon
content in the litter pool increases at nearly the litterfall rate when the biomass carbon is
low, and then sharply declines when biomass carbon increases. Thus, the approximately
10-year period of these cycles is consistent between pools.

Numerical averages and standard deviations for the carbon content in each pool over 500
years, by elevation, are shown in Table 3.
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Figure 4: Biomass Carbon Content over 20 Years

Figure 5: Litter Carbon Content over 20 Years

Pool 1500m 2500m 3500m Units
Litter 1245.0 ± 125.1 1095.6 ± 125.3 2160.6 ± 323.3 gC/m2

Humus 7986.2 ± 29.2 6972.2 ± 48.4 13537.2 ± 83.7 gC/m2

Biomass 19.3 ± 7.0 23.6 ± 8.5 26.8 ± 16.6 gC/m2

Table 3: Averages and Standard Deviations of Carbon Content in Pools
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5 Discussion

This model is relevant to present-day concerns regarding how ecosystems will respond
to moisture-related changes induced by climate change. Given that prolonged and more
frequent drought events have been occurring in many ecosystems across the world, this is
an important dynamic to be able to model. [9, 12] As low moisture causes both water and
nutrient stress in plants, we need to be able to predict the resilience of ecosystems to these
changes in order to predict how our natural areas will be impacted with worsening climate
change. [4] In the Amazon for example, plant responses to drought have been implicated
in contributing to hydrological feedback mechanisms that worsen drought scenarios, to the
point where many scientists believe that the Amazon has reached a hydrological tipping
point where it may flip to a drier temperate forest or savanna ecosystem. [9, 12] This is an
extreme example, but this model, and those similar to it, can help predict similar patterns
across the natural areas of the world.

The results of our model show that accumulation in organic carbon pools is much higher
in the lower rainfall area, which is consistent with the decrease in decomposition that we
expect with low moisture. This result does not exactly reflect the reality of the Mauna Kea
area, as vascular plants do not grow at that rainfall level. [2] However, if each area had
the same or similar vegetation this result would be fairly accurate. In arid or semi-arid
ecosystems, for example, carbon and other nutrients are mostly located in soil organic pools.
[3] One result that is not entirely consistent with observed patterns is the low amount of
carbon in the microbial biomass pool in the high rainfall area relative to the lower rainfall
areas. A possible explanation for this is the parabolic relationship between decomposition
and soil moisture that we applied in this model. [4, 10] In many systems, high moisture levels
suppress decomposition by creating anaerobic conditions for microbes, while low moisture
levels lead to microbial desiccation. [11] Though Mauna Kea’s rainfall is not extremely high,
the moisture level at low elevations is relatively much higher than that of higher elevations.

Our model appears to accurately represent the short-term influences of soil moisture
on carbon cycling. Our results for short-term runs are consistent with patterns shown by
Porporato et. al’s model, though nuanced responses can be expected with changes in initial
parameters. [10, 5]

This model is a simplified version of the dynamics between nutrient cycling and moisture
changes, so there are many possible sources of error. In terms of rainfall, we ignore seasonality
of rainfall, instead having consistent random rainfall spikes throughout the year. This works
in our application of the model to the windward side of Mauna Kea, as rainfall is fairly
constant throughout the year. [6] However, if this model were to be applied to seasonal
systems this would need to be adjusted. Also, as addressed in the parameter section, some
values that were used in applying this model to the Mauna Kea gradient were based on
values from the companion paper to Porporato et. al. [5] Their parameter values were
largely gathered through measurements in the field, which would be necessary to replicate
in order to apply our model to Mauna Kea as accurately as possible.
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Figure 6: Litter Carbon Content over 500 Years

Figure 7: Biomass Carbon Content over 500 Years
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